
1.  Introduction
Modern directional drillers primarily rely on natural magnetic and gravitational fields to determine the orien-
tation of their borehole assembly (BHA). This is because the GPS signals do not penetrate the underground. 
Ruggedized versions of vector magnetometers and accelerometers installed in the BHA measure the magnetic 
and gravity fields at fixed intervals when the drilling is stopped. This process is called “Measurement While 
Drilling (MWD).” The MWD data are transmitted to the drilling surface via mud pulses through the drilling fluid. 
By combining the magnetic and accelerometer data, the drilling engineers determine the orientation of the BHA. 
By combining the distance drilled with the orientation information, they construct the well path of the borehole 
within an envelope of uncertainty. However, the magnetometers only provide the azimuth of the BHA with 
respect to the local magnetic field's horizontal direction. Hence, properly converting the magnetic measurements 
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to efficiently calculate the spatio-temporal evolution of the magnetic field. Finally, we propose and validate 
a formalism allowing researchers to obtain trustworthy seabed signals using measurements at the adjacent 
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from an adjacent land-based magnetic observatory. However, this method assumes that the land-based signals 
are similar to those at the seabed drilling site. In this paper, we show that this is not the case, that is, the sea 
level and seabed magnetic fields differ significantly due to the electrical conductivity of the seawater column 
above the seabed site. Moreover, we propose and justify a numerical scheme which allows researchers to obtain 
trustworthy seabed signals by still using land-based data but exploiting the results of dedicated modeling.
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to geographic orientation using a geomagnetic field model is imperative. At the site of the borehole, the local 
magnetic field is the superposition of magnetic fields primarily arising from the following natural sources: 
Earth's core, crust and space-weather-related electric currents in the magnetosphere and ionosphere. Note that 
the MWD data might also be influenced by the magnetic signals arising from the BHA. The so-called “drillstring 
interference” is mitigated by additional processing such as multi-station analysis (e.g., Buchanan et al. (2013)) or 
by using tools manufactured with nonmagnetic materials. The core and crustal fields (being mostly static) can be 
accounted for through high-resolution models of the Earth's internal field, such as the High Definition Geomag-
netic Model (Nair et al., 2021) and British Geological Survey Global Geomagnetic Model (Beggan et al., 2021). 
However, electric currents in the ionosphere and magnetosphere and their counterparts induced in the conducting 
Earth give rise to diurnal and irregular variations observable in the MWD. One of the common ways for MWD 
engineers to mitigate the space-weather effects is to correct MWD readings for the magnetic field data from 
an adjacent land-based observatory or by interpolating the magnetic variations between a group of adjacent, 
land-based observatories (Reay et al., 2005). Poedjono et al. (2015) proposed sea level magnetic measurements 
using autonomous marine vehicles to support offshore drilling. Both of these methods assume that the signals 
measured at the sea level are similar to those at the seabed drilling site. Based on electromagnetic (EM) modeling, 
this paper shows that such approximations cannot be used for an offshore site. The EM induction causes the sea 
level and seabed magnetic fields to differ significantly at the same lateral location (i.e., at the same geographic 
latitude and longitude of the sea level and seabed points). Moreover, we propose and verify a numerical formal-
ism allowing researchers to obtain trustworthy seabed signals using magnetic field measurements at the adjacent 
land-based site and magnetic fields modeled at land-based and seabed sites.

The paper is organized as follows. Section  2 discusses a methodology allowing us to calculate accurately 
and efficiently time-varying magnetic field in a given conductivity model of the Earth, provided a source of 
magnetic field variations is also known. The methodology—being general, particularly in terms of the source 
parameterization—is implemented in this paper to model and analyze the spatio-temporal evolution of the 
magnetic field during geomagnetic storms. Global-scale problem setup advocates the parameterization of the 
magnetospheric source responsible for the storms using spherical harmonics (SH). Estimation of the correspond-
ing expansion coefficients from hourly-mean observatory data is also discussed in Section 2. Note that using a 
large-scale source model represented by SH and temporally resolved with a relatively low sampling interval (1 hr) 
precludes analysis of the high-latitude signals originating from an auroral ionospheric source, typically much 
smaller-scale and highly variable in time. Section 3 presents results of time-domain modeling of the magnetic 
field at sea level and seabed during the storms. Modeling is performed using three-dimensional (3-D) conduc-
tivity and (data-based) source models built as realistic as feasible. Section  3 demonstrates that the sea level 
horizontal magnetic fields significantly differ from those at the seabed, especially during the main phase of the 
geomagnetic storms; recall that conventionally they are assumed to be the same in MWD applications. Section 4 
compares modeling results with observations at land-based and seabed sites. Further, Section 5 introduces and 
justifies a scheme to obtain the seabed signals using the data from the adjacent land-based observatory and the 
results of comprehensive modeling discussed in Section 3. A scheme exploits a concept of transfer functions 
(TFs) that relate—in frequency domain—three components of the magnetic field at the seabed site of interest 
with those at the adjacent land-based site. In an example of the seabed observations in the Philippine Sea, we 
demonstrate the workability of the proposed scheme. Finally, Section 6 summarizes our findings and outlines the 
paths for further research. The paper also includes three appendices detailing the theoretical results presented in 
the main text.

2.  Methodology
2.1.  Governing Equations for Magnetic Field in the Frequency Domain

We start with the discussion of the problem in the frequency domain. Maxwell's equations govern EM field vari-
ations and, in the frequency domain, these equations read as

1

𝜇𝜇0

∇ × 𝐁𝐁 = 𝜎𝜎𝐄𝐄 + 𝐣𝐣ext
,� (1)

∇ × 𝐄𝐄 = i𝜔𝜔𝐁𝐁,� (2)
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where μ0 is the magnetic permeability of free space, ω is angular frequency, j ext(r, ω) is the extraneous (inducing) 
electric current density, B(r, ω; σ) and E(r, ω; σ) are magnetic and electric fields, respectively. σ(r) is the spatial 
distribution of electrical conductivity, r = (r, θ, φ) a position vector, in our case in the spherical geometry. Note 
that we neglected displacement currents and adopted the following Fourier convention

𝑓𝑓 (𝑡𝑡) =
1

2𝜋𝜋

∞

∫
−∞

𝑓𝑓 (𝜔𝜔)𝑒𝑒
−i𝜔𝜔𝜔𝜔

𝑑𝑑𝑑𝑑𝑑� (3)

We will assume that the current density, j ext(r, ω), can be represented as a linear combination of spatial modes 
ji(r)

𝐣𝐣ext(𝐫𝐫, 𝜔𝜔) =

𝐿𝐿
∑

𝑖𝑖=1

𝑐𝑐𝑖𝑖(𝜔𝜔)𝐣𝐣𝑖𝑖(𝐫𝐫).� (4)

The form of spatial modes ji(r) (and their number, L) varies with application. For example, j ext(r, ω) is parameter-
ized via SH in Püthe and Kuvshinov (2013), Honkonen et al. (2018), Guzavina et al. (2019), Grayver et al. (2021), 
current loops in Sun and Egbert  (2012), eigenmodes from the Principal Component Analysis (PCA) of the 
physics-based models in Egbert et al. (2021) and Zenhausern et al. (2021), and eigenmodes from the PCA of the 
data-based models in Kruglyakov et al. (2022). In this paper—because we work on a whole sphere—we will use 
SH parameterization of the source, namely

𝐣𝐣ext(𝐫𝐫, 𝜔𝜔) =
∑

𝑙𝑙𝑙𝑙𝑙

𝜖𝜖
𝑚𝑚

𝑙𝑙
(𝜔𝜔)𝐣𝐣𝑚𝑚

𝑙𝑙
(𝐫𝐫),� (5)

where l and m are degree and order of SH, respectively, expression 𝐴𝐴
∑

𝑙𝑙𝑙𝑙𝑙

 stands for the following double sum

∑

𝑙𝑙𝑙𝑙𝑙

≡
𝑁𝑁𝑙𝑙
∑

𝑙𝑙=1

𝑙𝑙
∑

𝑚𝑚=−𝑙𝑙

,� (6)

and 𝐴𝐴 𝐣𝐣𝑚𝑚
𝑙𝑙
(𝐫𝐫) is the (extraneous) source corresponding to a specific SH, namely (see Kuvshinov et al. (2021))

𝐣𝐣𝑚𝑚
𝑙𝑙
(𝐫𝐫) = 𝛿𝛿(𝑟𝑟 − 𝑎𝑎+)

1

𝜇𝜇0

2𝑙𝑙 + 1

𝑙𝑙 + 1
𝐞𝐞𝑟𝑟 × ∇⟂𝑌𝑌

𝑚𝑚

𝑙𝑙
(𝜃𝜃𝜃 𝜃𝜃),� (7)

where δ is Dirac's delta function, a is the mean radius of the Earth, a+ means that 𝐴𝐴 𝐣𝐣𝑚𝑚
𝑙𝑙
 flows above the Earth’ 

surface, er is radial unit vector of the spherical coordinate system, ∇⊥ = r∇H, ∇H is tangential part of gradient, 
𝐴𝐴 𝐴𝐴

𝑚𝑚

𝑙𝑙
(𝜗𝜗𝜗 𝜗𝜗) = 𝑃𝑃

|𝑚𝑚|

𝑙𝑙
(cos 𝜃𝜃)𝑒𝑒i𝑚𝑚𝑚𝑚 with 𝐴𝐴 𝐴𝐴

|𝑚𝑚|

𝑙𝑙
 given by the Schmidt quasi-normalized associated Legendre functions.

By virtue of the linearity of Maxwell's equations with respect to the j ext(r, ω) term, we can expand the total (i.e., 
inducing plus induced) magnetic field as a linear combination of individual fields 𝐴𝐴 𝐁𝐁𝑚𝑚

𝑙𝑙
 ,

𝐁𝐁(𝐫𝐫, 𝜔𝜔; 𝜎𝜎) =
∑

𝑙𝑙𝑙𝑙𝑙

𝜖𝜖
𝑚𝑚

𝑙𝑙
(𝜔𝜔)𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫, 𝜔𝜔; 𝜎𝜎),� (8)

where the 𝐴𝐴 𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫, 𝜔𝜔; 𝜎𝜎) field is the “magnetic” solution of corresponding Maxwell's equations; see Equations 1 

and 2 with the extraneous source in the form of 𝐴𝐴 𝐣𝐣𝑚𝑚
𝑙𝑙
(𝐫𝐫) .

2.2.  Governing Equations for Magnetic Field in the Time Domain

The transformation of the Equation 8 into the time domain leads to the representation of the magnetic field as

𝐁𝐁(𝐫𝐫, 𝑡𝑡; 𝜎𝜎) =
∑

𝑙𝑙𝑙𝑙𝑙

∞

∫
0

𝜖𝜖
𝑚𝑚

𝑙𝑙
(𝑡𝑡 − 𝜏𝜏)𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫, 𝜏𝜏; 𝜎𝜎)𝑑𝑑𝑑𝑑𝑑� (9)

The reader is referred to Appendix A in Kruglyakov et al. (2022) for more details on the convolution integrals 
in the latter equation. We note that we use the same notation for the fields in the time and frequency domain. 
Equation 9 shows how magnetic field can be calculated provided 𝐴𝐴 𝐴𝐴

𝑚𝑚

𝑙𝑙
 and conductivity model σ are given. To make 
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the formula ready for implementation, one also needs to estimate an upper limit of integrals in Equation 9, or, 
in other words, to evaluate a time interval, T, above which 𝐴𝐴 𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫, 𝜏𝜏; 𝜎𝜎) becomes negligibly small. The latter will 

allow us to rewrite Equation 9 as

𝐁𝐁(𝐫𝐫, 𝑡𝑡; 𝜎𝜎) ≈
∑

𝑙𝑙𝑙𝑙𝑙

𝑇𝑇

∫
0

𝜖𝜖
𝑚𝑚

𝑙𝑙
(𝑡𝑡 − 𝜏𝜏)𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫, 𝜏𝜏; 𝜎𝜎)𝑑𝑑𝑑𝑑𝑑� (10)

Note that the upper limit in the integrals could be different for different 𝐴𝐴 𝐣𝐣𝑚𝑚
𝑙𝑙
 , different components of the field, 

and different locations. However, we choose a conservative approach, taking a single T as a maximum from all 
individual upper limit estimates. Our model experiments (not shown in the paper) advocate that T should be taken 
as half a year.

The details of numerical calculation of the integrals in Equation  10 are presented in Appendix  A. In short, 
assuming that 𝐴𝐴 𝐴𝐴

𝑚𝑚

𝑙𝑙
(𝑡𝑡) are given time series with the sampling interval Δt and T = NtΔt, one calculates B(r, tk; σ) at 

tk = kΔt as

𝐁𝐁 (𝐫𝐫, 𝑡𝑡𝑘𝑘; 𝜎𝜎) ≈
∑

𝑙𝑙𝑙𝑙𝑙

𝑁𝑁𝑡𝑡
∑

𝑛𝑛=0

𝜖𝜖
𝑚𝑚

𝑙𝑙
(𝑡𝑡𝑘𝑘 − 𝑛𝑛Δ𝑡𝑡)

𝑛𝑛

𝐁𝐁𝑚𝑚

𝑙𝑙

(𝐫𝐫, 𝑇𝑇 ; 𝜎𝜎).� (11)

A few comments are relevant at this point.

•	 �Quantities 𝐴𝐴 
𝑛𝑛

𝐁𝐁𝑚𝑚

𝑙𝑙

(𝐫𝐫, 𝑇𝑇 ; 𝜎𝜎) are time-invariant, and—for the predefined set of 𝐴𝐴 𝐣𝐣𝑚𝑚
𝑙𝑙
 and a given conductivity 

model—are calculated only once, then stored and used, when the calculation of B(r, tk; σ) is required. Actual 
form and estimation of 𝐴𝐴 

𝑛𝑛

𝐁𝐁𝑚𝑚

𝑙𝑙

(𝐫𝐫, 𝑇𝑇 ; 𝜎𝜎) are discussed in Appendix A.
•	 �r stands for any location, thus allowing us to calculate magnetic field at satellite altitude, ground or/and 

seabed.
•	 �Calculation of B(r, tk; σ) requires knowledge 𝐴𝐴 𝐴𝐴

𝑚𝑚

𝑙𝑙
 . We discuss a numerical scheme to estimate of 𝐴𝐴 𝐴𝐴

𝑚𝑚

𝑙𝑙
 in Section 2.3 

and their actual estimation in Section 3.2.

2.3.  A Numerical Scheme to Estimate  From Observatory Data

A numerical scheme for estimating 𝐴𝐴 𝐴𝐴
𝑚𝑚

𝑙𝑙
 from observatory data relies on the following assumptions:

•	 �The conductivity model—as realistic as possible—is known to us;
•	 �We work with time series of three components of the magnetic field B at J geomagnetic observatories with 

coordinates rj = (a, θj, φj), j = 1, 2, …, J. The time series are given with a sampling interval, Δt, which we 
take as 1 hr, meaning that we will work with hourly-mean observatory data.

•	 �The above-mentioned time series are available for several years of observations, thus at time instants t1, 
t1 + Δt, t1 + 2Δt, ….

With these assumptions in mind, the calculation of 𝐴𝐴 𝐴𝐴
𝑚𝑚

𝑙𝑙
 at a given time instant tk = kΔt, k = 1, 2, … is performed as 

follows. Substituting coordinates of observatories into Equation 11 and rearranging the terms, we obtain a system 
of equations to determine 𝐴𝐴 𝐴𝐴

𝑚𝑚

𝑙𝑙
(𝑡𝑡𝑘𝑘)

∑

𝑙𝑙𝑙𝑙𝑙

𝜖𝜖
𝑚𝑚

𝑙𝑙
(𝑡𝑡𝑘𝑘)

0

𝐁𝐁𝑚𝑚

𝑙𝑙

(𝐫𝐫𝑗𝑗 , 𝑇𝑇 ; 𝜎𝜎) = 𝐁𝐁 (𝐫𝐫𝑗𝑗 , 𝑡𝑡𝑘𝑘) −
∑

𝑙𝑙𝑙𝑙𝑙

𝑁𝑁𝑡𝑡
∑

𝑛𝑛=1

𝜖𝜖
𝑚𝑚

𝑙𝑙
(𝑡𝑡𝑘𝑘 − 𝑛𝑛Δ𝑡𝑡)

𝑛𝑛

𝐁𝐁𝑚𝑚

𝑙𝑙

(𝐫𝐫𝑗𝑗 , 𝑇𝑇 ; 𝜎𝜎) , 𝑗𝑗 = 1, 2,… , 𝐽𝐽 𝐽� (12)

As we discussed earlier, with T as long as a half of a year, Nt ≈ 24 × 180 = 4,320 provided sampling rate Δt 
is one hour. If we start with the first time instant, that is, with tk = t1 we do not have 𝐴𝐴 𝐴𝐴

𝑚𝑚

𝑙𝑙
 in the past; thus actual 

implementation of Equation 12 requires modification of it's right-hand side as

∑

𝑙𝑙𝑙𝑙𝑙

𝜖𝜖
𝑚𝑚

𝑙𝑙
(𝑡𝑡𝑘𝑘)

0

𝐁𝐁𝑚𝑚

𝑙𝑙

(𝐫𝐫𝑗𝑗 , 𝑇𝑇 ; 𝜎𝜎) = 𝐁𝐁 (𝐫𝐫𝑗𝑗 , 𝑡𝑡𝑘𝑘) −
∑

𝑙𝑙𝑙𝑙𝑙

min(𝑘𝑘−1,𝑁𝑁𝑡𝑡)
∑

𝑛𝑛=1

𝜖𝜖
𝑚𝑚

𝑙𝑙
(𝑡𝑡𝑘𝑘 − 𝑛𝑛Δ𝑡𝑡)

𝑛𝑛

𝐁𝐁𝑚𝑚

𝑙𝑙

(𝐫𝐫𝑗𝑗 , 𝑇𝑇 ; 𝜎𝜎) .� (13)
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Our model experiments (not shown in the paper) suggest that after a half of year (i.e., for 𝐴𝐴 𝑡𝑡
′

𝑘𝑘 = (𝑁𝑁𝑡𝑡 + 𝑘𝑘) Δ𝑡𝑡𝑡 𝑘𝑘 = 1, 2 
𝐴𝐴 𝑡𝑡

′

𝑘𝑘 = (𝑁𝑁𝑡𝑡 + 𝑘𝑘) Δ𝑡𝑡𝑡 𝑘𝑘 = 1, 2, … ) one obtains correct 𝐴𝐴 𝐴𝐴
𝑚𝑚

𝑙𝑙
 .

The expression (13) represents a system of linear equations (SLE) which is overdetermined when the number of 
unknowns (coefficients), Nc = Nl × (Nl + 2), is smaller than the number of equations, No = Nb × J, where Nb stands 
for number of magnetic field components. In practice Nc (with Nl = 4 giving Nc = 24) is always much smaller 
than No (with J near 70 and Nb = 2 giving No = 140). Nb = 2 means we use two horizontal magnetic field compo-
nents (assuming a prior Earth's conductivity model) to estimate 𝐴𝐴 𝐴𝐴

𝑚𝑚

𝑙𝑙
 . We only use the horizontal components since 

3-D conductivity effects influence these components much less than the radial component (Kuvshinov, 2008). 
Note that the choice Nl = 4 allows us to represent both magnetospheric and a major part of the mid-latitude 
quasi-periodic (with period of 24 hr) ionospheric source.

Once 𝐴𝐴 𝐴𝐴
𝑚𝑚

𝑙𝑙

(

𝑡𝑡
′

𝑘𝑘

)

 are estimated for 𝐴𝐴 𝑡𝑡
′

𝑘𝑘 = (𝑁𝑁𝑡𝑡 + 𝑘𝑘) Δ𝑡𝑡𝑡 𝑘𝑘 = 1, 2, … , one can calculate B(r, tk; σ), k ≥ 2Nt using Equation 11 
at any location r. In our modeling studies to be discussed in the following sections, r is either a laterally-uniform 
grid at the surface of the Earth (i.e., sea level) and at the seabed or coordinates of the land-based and seabed sites 
at which we analyze modeled and experimental results.

3.  Modeling Results
3.1.  Building the Conductivity Model

We build the 3-D conductivity model of the Earth, which includes nonuniform oceans and continents (generally 
with 3-D conductivity distribution) and a laterally uniform (1-D) mantle underneath. In this paper, we work with 
hourly-mean observatory data, which, in particular, means that we are forced to analyze magnetic field variations 
with periods of 2 hr and longer due to the Nyquist-Shannon theorem. For typical values of the Earth's conductiv-
ity, the penetration depth of the EM field exceeds a hundred kilometers (even at a period of 2 hr), much larger than 
the maximum ocean depths and sediment thicknesses (23 km). This fact allows us to shrink the nonuniform layer 
comprising oceans and continents into a thin shell of laterally-variable conductance (depth-integrated conductiv-
ity, with the depth taken as 23 km as mentioned earlier); discussion on the adequacy of the thin shell model can 
be found in Ivannikova et al. (2018).

For the conductance distribution in oceanic regions, we used 0.1°  ×  0.1° marine map of conductance built 
by Grayver  (2021). The inland conductances are obtained from the global conductivity model of Alekseev 
et al. (2015) which has a lateral resolution of 0.25° × 0.25°; to make it compatible with oceanic conductances, 
the resulting inland conductances were interpolated to 0.1° × 0.1° grid. The inland conductance distribution 
was updated in North America using the recently published contiguous 3-D conductivity model of US (Kelbert 
et al., 2019). Figure 1 shows the global distribution of the compiled conductance. As for the 1-D structure under-
neath, it is taken from Kuvshinov et al. (2021).

3.2.  Estimating 

As discussed in Section 2.3, the estimation of 𝐴𝐴 𝐴𝐴
𝑚𝑚

𝑙𝑙
 requires the data from a global network of geomagnetic obser-

vatories. We work with 1997–2019 collection of hourly mean time series of the geomagnetic field from equator-
ward of ±55° observatories. These data were retrieved from the British Geological Survey database (Macmillan 
& Olsen, 2013). The locations of observatories from which the data were used are shown in Figure 2. We then 
removed from the data the main field and its secular variations using the CHAOS model (Finlay et al., 2020).

Further, we solved overdetermined system of linear Equation 13 to obtain coefficients 𝐴𝐴 𝐴𝐴
𝑚𝑚

𝑙𝑙
 at each time instant tk 

(t1 stands for 1 January 1997 00:30:00 UTC) taking Nl = 4 in Equation 6, which gives us Nc = Nl × (Nl + 2) = 24 
coefficients per time instant. As mentioned in the previous section, we use only horizontal components of the 
magnetic field to estimate the coefficients.

We also note that since we consider the long (1997–2019) time series of the magnetic field, we adopt a geographic 
coordinate system—instead of the usually used geomagnetic coordinates—to avoid possible complications asso-
ciated with the change of location of the geomagnetic pole during the considered (long) period of time.

During the observational period of 1997–2019, the number of observatories J in Equation 13 available at any time 
varied in the range from 38 to 112 due to the data gaps at specific observatories.
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Figure 1.  Global conductance distribution in the surface thin shell (in Siemens). See details in the text.

Figure 2.  Locations of the observatories (red circles) from which data were used to estimate 𝐴𝐴 𝐴𝐴
𝑚𝑚

𝑙𝑙
 . Blue lines stand for ±55° geomagnetic latitudes.
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Final comment of this section refers to computation of 𝐴𝐴 
𝑛𝑛

𝐁𝐁𝑚𝑚

𝑙𝑙

(𝐫𝐫𝑗𝑗 , 𝑇𝑇 ; 𝜎𝜎) . As shown in Appendix  A it requires 
calculation of 𝐴𝐴 𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑗𝑗 , 𝜔𝜔; 𝜎𝜎) at a number of frequencies. Such calculations are performed by novel, accurate and 

efficient solver GEMMIE (Kruglyakov & Kuvshinov, 2022) which is based on an integral equation approach 
with contracting kernel (Pankratov & Kuvshinov, 2016). Constructively, 𝐴𝐴 𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫, 𝜔𝜔; 𝜎𝜎) are calculated on a lateral 

grid 0.1° × 0.1° (in 3-D model discussed in Section 3.1) and then the results are interpolated to the observatory 
locations rj.

As an example, Figure  3 shows the time series of the dominant coefficient 𝐴𝐴 𝐴𝐴
0

1
 estimated for 1998–2019. As 

expected, the time series is most disturbed in 1999–2003 (Solar Cycle No 23), the years of maximum solar activ-
ity in its 11-year cycle.

3.3.  Sea Level Versus Seabed Modeled Results

After estimating the time series of coefficients 𝐴𝐴 𝐴𝐴
𝑚𝑚

𝑙𝑙
 with one hour sampling interval for the 1998–2019 period, 

we calculate for the same period and with the same sampling interval the time series of the magnetic field at 
0.1° × 0.1° grid—both at sea level and seabed—using Equation 11. Note that 1997 year is not included into 
further analysis due to the reason, discussed in the Section 2.3 (see explanation after Equation 13). Having mode-
ling results for the 1998–2019 years on the 0.1° × 0.1° grid allows us to compare sea level and seabed magnetic 
fields globally or at specific locations for any time instant of the 1998–2019 period.

This section presents the global scale results during the main phase of three major geomagnetic storms. The main 
phase (centered around the peak of the geomagnetic storm) is chosen because the magnitude of the magnetic 
field reaches its maximum. Moreover, during the main phase, the field has the most complex spatial structure 
due to the enhanced asymmetry of the magnetospheric ring current, which is the primary source of geomagnetic 
storm signals. The Figures 4–9 present horizontal magnetic field, BH = (Bθ, Bφ), at sea level and corresponding 
differences between seabed and sea level results, 𝐴𝐴 𝐴𝐴𝐁𝐁𝐻𝐻 = 𝐁𝐁seabed

𝐻𝐻
− 𝐁𝐁sea level

𝐻𝐻
 , during main phase of the storms: 7 

April 2000, 30 October 2003 (Halloween storm) and 17 March 2015 (St. Patrick storm). The first storm is chosen 
because we have seabed data for it (see Section 4). Note also that we do not show the radial component since 
it remains continuous across the ocean column for the considered variations (with periods of 2 hr and longer). 
One can see that the difference reaches 25%–30% of sea level values in many oceanic regions, both in Bθ and Bφ 
components. Their difference generally depends on the ocean's depth, but this can be complicated by the spatial 
structure of the current sources. It is also seen that the spatial patterns of BH and dBH differ from storm to storm; 

Figure 3.  Time series of 𝐴𝐴 𝐴𝐴
0

1
 estimated for 1998–2019 years. Ticks for the years stand for June 15 of the corresponding year.
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Figure 4.  Modeled 𝐴𝐴 𝐴𝐴
sea level

𝜃𝜃
 (top) and 𝐴𝐴 𝐴𝐴

seabed

𝜃𝜃
− 𝐵𝐵

sea level

𝜃𝜃
 (bottom) at 00:30 7 April 2000 UTC. The results are in nT.
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Figure 5.  Modeled 𝐴𝐴 𝐴𝐴
sea level

𝜑𝜑  (top) and 𝐴𝐴 𝐴𝐴
seabed

𝜑𝜑 − 𝐵𝐵
sea level

𝜑𝜑  (bottom) at 00:30 7 April 2000 UTC. The results are in nT.
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Figure 6.  Modeled 𝐴𝐴 𝐴𝐴
sea level

𝜃𝜃
 (top) and 𝐴𝐴 𝐴𝐴

seabed

𝜃𝜃
− 𝐵𝐵

sea level

𝜃𝜃
 (bottom) at 20:30 30 October 2003 UTC (Halloween storm). The results are in nT.
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Figure 7.  Modeled 𝐴𝐴 𝐴𝐴
sea level

𝜑𝜑  (top) and 𝐴𝐴 𝐴𝐴
seabed

𝜑𝜑 − 𝐵𝐵
sea level

𝜑𝜑  (bottom) at 20:30 30 October 2003 UTC (Halloween storm). The results are in nT.
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Figure 8.  Modeled 𝐴𝐴 𝐴𝐴
sea level

𝜃𝜃
 (top) and 𝐴𝐴 𝐴𝐴

seabed

𝜃𝜃
− 𝐵𝐵

sea level

𝜃𝜃
 (bottom) at 23:30 17 March 2015 UTC (St. Patrick storm).The results are in nT.
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Figure 9.  Modeled 𝐴𝐴 𝐴𝐴
sea level

𝜑𝜑  (top) and 𝐴𝐴 𝐴𝐴
seabed

𝜑𝜑 − 𝐵𝐵
sea level

𝜑𝜑  (bottom) at 23:30 17 March 2015 UTC (St. Patrick storm). The results are in nT.
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however, with visible dominance of spatial structure responsible for the symmetric part of the magnetospheric 
ring current.

4.  Modeled Versus Observed Results
Now we compare storm-time time series of the modeled and observed magnetic fields in the region where we 
have both sea level (land-based) and seabed magnetic field measurements. From November 1999 to July 2000, 
the seabed magnetotelluric (MT) survey was conducted in the Philippine Sea (Seama et al., 2007) at six locations 
along a line at water depths between 3,250 and 5,430  m, depicted as OBEM 1, OBEM 2, …, OBEM 6 in 
Figure 10. Note that OBEM 3, which was installed on the seabed between sites OBEM 2 and OBEM 4, is not 
shown because it did not provide reliable data.

As for the land-based site, we have chosen the Kanoya (Intermagnet code: KNY) observatory, the nearest obser-
vatory to the seabed MT survey region. Figure 11 presents modeled and observed BH at KNY and OBEM 1, 
OBEM 4, and OBEM 6 sites; OBEM 2 and OBEM 5 sites are excluded from the analysis not to overwhelm the 
exposition. Note that the baseline and a linear trend were subtracted from the data to remove core and crustal 
field contributions and possible instrument drift. We show the results for 4 days of the April 2000 storm, which 
appeared to be the only significant event during the deployment of the seabed MT instruments. We can make 
several observations from the figure: (a) modeled and observed results agree remarkably well for all (land-based 
and seabed) sites and both components; (b) an agreement is slightly better in Bθ which is three times larger than 
Bφ; (c) seabed signals at 20% smaller than land-based signals which is in agreement with the global results 
presented in the previous section.

However, during offshore drilling, no seabed magnetic field measurements are performed near the drilling site. 
Therefore, to correct magnetic field MWD for the disturbing effects from space-weather events (storms and 
substorms), one usually uses the magnetic field measurements from the adjacent land-based site/observatory, 
assuming that these signals are close to those one could observe at the seabed in the vicinity of the drilling site. 
But—as demonstrated in this and previous sections—land-based and seabed time-varying magnetic fields differ 
significantly. Considering this fact and encouraged by an agreement between modeled and observed results, we, 
in the next section, introduce a numerical scheme that allows researchers to obtain offshore seabed signals from 
the adjacent land-based observations.

5.  Introducing a Numerical Scheme to Estimate Offshore Seabed Signals From the 
Adjacent Land-Based Observations
Let us imagine that the drilling is performed at an offshore (seabed) site rsb, and one has to estimate (and then 
account for) magnetic variations at rsb. A standard way to estimate these variations is to take magnetic field vari-
ations from the nearby land-based site rlb, assuming that variations at rsb do not significantly differ from those  at 
rlb. However, as we showed in Sections 3 and 4, horizontal components of the magnetic field are substantially 
different at sea level and seabed.

Below we propose and justify a scheme to more correctly estimate magnetic field variations at an offshore, that 
is, seabed, drilling point rsb. A scheme exploits an assumption that frequency-domain magnetic fields at locations 
rsb and rlb are related through inter-site 3 × 3 matrix transfer function T

𝐁𝐁 (𝐫𝐫𝑠𝑠𝑠𝑠, 𝜔𝜔; 𝜎𝜎) ≈ 𝑇𝑇 (𝐫𝐫𝑠𝑠𝑠𝑠, 𝐫𝐫𝑙𝑙𝑙𝑙, 𝜔𝜔; 𝜎𝜎)𝐁𝐁 (𝐫𝐫𝑙𝑙𝑙𝑙, 𝜔𝜔; 𝜎𝜎) ,� (14)

where

� (���, ���, �; �) =

⎛

⎜

⎜

⎜

⎜

⎝

��� ��� ���

��� ��� ���

��� ��� ���

⎞

⎟

⎟

⎟

⎟

⎠

.� (15)

It is important to stress that Equation 14 holds approximately, but as we will see later in this section, this approx-
imation works well, especially when the lateral separation between land-based and seabed sites is not too large. 
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Estimating the elements of T at a given frequency ω and conductivity model σ is performed as follows. First, one 
calculates the fields 𝐴𝐴 𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑙𝑙𝑙𝑙, 𝜔𝜔; 𝜎𝜎) and 𝐴𝐴 𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠𝑠𝑠, 𝜔𝜔; 𝜎𝜎) . Then, applying PCA to 𝐴𝐴 𝐴𝐴

𝑚𝑚

𝑙𝑙
(𝑡𝑡) one determines three dominant 

combinations of the 𝐴𝐴 𝐁𝐁𝑚𝑚

𝑙𝑙
 which we will denote as B (i), i = 1, 2, 3 (see details in Appendix C). Finally, the elements 

of T are estimated row-wise using the B (i) fields. For example, the elements of the first row of T are determined 
as the solution of the following SLE

𝑇𝑇𝑟𝑟𝑟𝑟𝐵𝐵
(𝑖𝑖)
𝑟𝑟 (𝐫𝐫𝑙𝑙𝑙𝑙) + 𝑇𝑇𝑟𝑟𝑟𝑟𝐵𝐵

(𝑖𝑖)

𝜃𝜃
(𝐫𝐫𝑙𝑙𝑙𝑙) + 𝑇𝑇𝑟𝑟𝑟𝑟𝐵𝐵

(𝑖𝑖)
𝜑𝜑 (𝐫𝐫𝑙𝑙𝑙𝑙) = 𝐵𝐵

(𝑖𝑖)
𝑟𝑟 (𝐫𝐫𝑠𝑠𝑠𝑠) , 𝑖𝑖 = 1, 2, 3.� (16)

Figure 10.  Locations of the land-based sites (Japanese geomagnetic observatories) and seabed sites. Note that OBEM 3, 
which was installed on the seabed between OBEM 2 and OBEM 4, did not provide useful data. Colors indicate topography/
bathymetry.
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Figure 11.  Modeled (blue) and observed (black) Bθ (left) and Bφ (right) at KNY and OBEM 1, OBEM 4, and OBEM 6 sites 
during 4–9 April 2000 storm. The results are in nT. Time is in UTC.
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Note, that in Equation 16 the dependency of all quantities on ω, B (i) on σ, and elements of T on σ, rsb and rlb are 
omitted but implied. Once elements of T are estimated at a predefined frequencies, B at seabed site rsb at a given 
time instant tk = kΔt is calculated similarly as it was done in Equation 11, that is,

𝐁𝐁 (𝐫𝐫𝑠𝑠𝑠𝑠, 𝑡𝑡𝑘𝑘; 𝜎𝜎) ≈

𝑁𝑁𝑡𝑡
∑

𝑛𝑛=0


𝑛𝑛

(𝐫𝐫𝑠𝑠𝑠𝑠, 𝐫𝐫𝑙𝑙𝑙𝑙, 𝑇𝑇 ; 𝜎𝜎)𝐁𝐁 (𝐫𝐫𝑙𝑙𝑙𝑙, 𝑡𝑡𝑘𝑘 − 𝑛𝑛Δ𝑡𝑡) .� (17)

Before showing results justifying the proposed scheme, one critical comment is relevant here. In Section 3 we 
stated that the radial component (for the considered variations) is the same on the sea level and the seabed. Thus 
the question may arise why in Equation 14 we also invoke the radial components? To address this question, we 
remind the reader that the statement about the similarity of the radial component at sea level and the seabed is 
indeed valid, provided both signals refer to the same lateral location. However, in the problem setup we consider, 
the land-based (sea level) site is usually located at the coast and at a distance from the drilling point (as in our 
example). Moreover—and in contrast to horizontal components—the coastal radial field is dramatically distorted 
by the so-called ocean induction effect originating from large lateral conductivity contrasts between the ocean 
and land (Olsen & Kuvshinov, 2004; Parkinson & Jones, 1979). Figures 12–14 illustrates this fact by presenting 
a radial field at a global scale during the main phase of three storms mentioned above. One can see that, indeed, 
the magnitude of the radial component enhances substantially in coastal regions.

We calculated seabed fields using TF-based formalism discussed above and compared them with observations. 
As in Figure 11, Figure 15 shows results for 4 days of the April 2000 storm. It is seen that TF-based and observed 
results are in agreement with the observations at all three seabed sites and for both components. As expected, the 
agreement (generally very good) worsens with the distance from the land-based (KNY) site, which varies from 
478 to 2,146 km (see Table 1). KNY results which are used in Equation 17 are also shown in the figure. Once 
again, one may notice that land-based results differ much from seabed results.

As a whole, Figure  15 demonstrates that, indeed, one can obtain trustworthy seabed signals by exploiting 
TF-based approach as applied to adjacent land-based measurements.

Figure 12.  Modeled 𝐴𝐴 𝐴𝐴
sea level

𝑟𝑟  at 00:30 7 April 2000 UTC. The results are in nT.
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Figure 13.  Modeled 𝐴𝐴 𝐴𝐴
sea level

𝑟𝑟  at 20:30 30 October 2003 UTC (Halloween storm). The results are in nT.

Figure 14.  Modeled 𝐴𝐴 𝐴𝐴
sea level

𝑟𝑟  at 23:30 17 March 2015 UTC (St. Patrick storm). The results are in nT.
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6.  Conclusions
In this paper, we presented an approach to efficiently calculating spatio-temporal evolution of magnetic field 
at any location (at satellite altitude, ground or seabed) in a given conductivity model of the Earth, provided the 

Figure 15.  Modeled by transfer functions approach (blue) and observed (black) Bθ (left) and Bφ (right) at OBEM stations during 4–9 April 2000. Dark red stands for 
observed field components at Kanoya. The results are in nT. Time is in UTC.
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source of magnetic field variations is also known. The approach relies on 
the factorization of the source by spatial modes and time series of respec-
tive expansion coefficients and exploits precomputed magnetic field kernels 
generated by corresponding spatial modes.

The methodology—being general—is implemented in this paper to model and 
analyze the spatio-temporal evolution of the magnetic field during geomag-
netic storms. Global-scale problem setup advocates the parameterization of 
the magnetospheric source responsible for the storms using SH. We also 
presented a numerical scheme  to estimate the time series of corresponding 
expansion coefficients using the data from the global network of geomag-
netic observatories and exploiting precomputed magnetic field kernels.

We implemented the developed approach to model magnetic field behavior during three geomagnetic storms 
and demonstrated that the sea level horizontal magnetic fields significantly differ from those at the seabed, espe-
cially during the main phase of the geomagnetic storms. We then compared modeling results with observations 
at land-based and seabed sites and detected remarkable agreement between modeled and observed fields for all 
(land-based and seabed) sites and in both components.

Finally, we introduced and justified a scheme to obtain the seabed signals using the data from the adjacent 
land-based observatory and the results of comprehensive modeling. A method exploits a concept of transfer 
functions that relate—in frequency domain—three components of the magnetic field at the seabed site of interest 
with those at the land-based site. In an example of the seabed observations in the Philippine Sea, we demonstrate 
the workability of the proposed scheme.

This paper discussed magnetic fields induced by a large-scale magnetospheric source that dominates in mid- 
and low-latitudes. However, it is well known that one can expect much larger signals in polar regions due to 
substorm geomagnetic disturbances (Pirjola, 2002). The recovery of the spatio-temporal structure of the auroral 
ionospheric source, which is responsible for this activity, is more challenging due to the large variability of this 
source both in time and space. One of the ways to determine realistic auroral currents on a regional scale consists 
of collecting the data from high-latitude geomagnetic observatories and polar magnetometer arrays, for example, 
IMAGE array in Scandinavia (Tanskanen, 2009), CARISMA (Mann et  al.,  2008) and AUTUMNX (Connors 
et al., 2016) arrays in Canada, and then reconstructing the auroral current, for instance, by exploiting an approach 
based on spherical elementary current systems, SECS (Vanhamäki & Juusola, 2020). Note that this approach was 
used by Kruglyakov et al. (2022), who discussed real-time 3-D modeling of the ground electric field due to space 
weather events.

Once the auroral source is quantified, a similar numerical scheme described in the paper can be implemented with 
three modifications. One modification concerns the description of the substorm source—instead of using a SH 
representation, one can approximate the spatio-temporal evolution of the auroral ionospheric current via spatial 
modes obtained by PCA of SECS (Kruglyakov et al., 2022). Another modification applies to the 3-D conductivity 
model. Since substorm magnetic variations are characterized by periods between seconds and hours, one cannot 
exploit a model in which the surface layer is approximated by a thin shell, as this paper did. The variable thickness 
of this layer is essential in this period range; thus, a full 3-D model (including bathymetry) should be considered. 
The final modification invokes Cartesian geometry instead of the spherical geometry used in this paper. An 
application of the proposed scheme to a regional problem setup will be the subject of a subsequent publication.

Appendix A:  Details of the Numerical Computation of Magnetic Field in Time 
Domain
In this section we provide details how equation

𝐁𝐁 (𝐫𝐫𝑠𝑠, 𝑡𝑡; 𝜎𝜎) =
∑

𝑙𝑙𝑙𝑙𝑙

∞

∫
0

𝜖𝜖
𝑚𝑚

𝑙𝑙
(𝑡𝑡 − 𝜏𝜏)𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠, 𝜏𝜏; 𝜎𝜎)𝑑𝑑𝑑𝑑 ≈

∑

𝑙𝑙𝑙𝑙𝑙

𝑇𝑇

∫
0

𝜖𝜖
𝑚𝑚

𝑙𝑙
(𝑡𝑡 − 𝜏𝜏)𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠, 𝜏𝜏; 𝜎𝜎)𝑑𝑑𝑑𝑑𝑑� (A1)

in an assumption that 𝐴𝐴 𝐴𝐴
𝑚𝑚

𝑙𝑙
 are discrete time series with sampling interval Δt, is deduced to equation

Site name Latitude Longitude Depth (m) Distance to KNY (km)

OBEM 1 16.573 144.695 3,259 2,146

OBEM 4 22.560 138.120 5,102 1,201

OBEM 6 27.190 132.417 5,431 478

Table 1 
Coordinates of Seabed Sites, Their Depths, and Distances to Kanoya (KNY) 
Observatory
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𝐁𝐁 (𝐫𝐫𝑠𝑠, 𝑡𝑡𝑘𝑘; 𝜎𝜎) ≈
∑

𝑙𝑙𝑙𝑙𝑙

𝑁𝑁𝑡𝑡
∑

𝑛𝑛=0

𝜖𝜖
𝑚𝑚

𝑙𝑙
(𝑡𝑡𝑘𝑘 − 𝑛𝑛Δ𝑡𝑡)

𝑛𝑛

𝐁𝐁𝑚𝑚

𝑙𝑙

(𝐫𝐫𝑠𝑠, 𝑇𝑇 ; 𝜎𝜎) ,� (A2)

where tk is a current time instant. First we notice that with finite T, one must account for a possibly non-negligible 
linear trend in time series 𝐴𝐴 𝐴𝐴

𝑚𝑚

𝑙𝑙
(𝑡𝑡) . By removing the trend, we are forced to work with the following function

��
� (�, �; � ) =

⎧

⎪

⎨

⎪

⎩

��� (� − �) − ��� (�) −
��� (� − � ) − ��� (�)

�
�, � ∈ [0, � ]

0, � ∉ [0, � ].
� (A3)

Substituting Equation A3 into the right-hand side (RHS) of Equation A1, and considering (for simplicity) only 
one term in the sum, we obtain

𝑇𝑇∫
0

𝜖𝜖
𝑚𝑚

𝑙𝑙
(𝑡𝑡 − 𝜏𝜏)𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠, 𝜏𝜏; 𝜎𝜎) 𝑑𝑑𝑑𝑑 = 𝜖𝜖

𝑚𝑚

𝑙𝑙
(𝑡𝑡)

𝑇𝑇∫
0

𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠, 𝜏𝜏; 𝜎𝜎) 𝑑𝑑𝑑𝑑

+

𝑇𝑇∫
0

𝑑𝑑
𝑚𝑚

𝑙𝑙
(𝑡𝑡𝑡𝑡𝑡 ; 𝑇𝑇 )𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠, 𝜏𝜏; 𝜎𝜎) 𝑑𝑑𝑑𝑑 +

𝜖𝜖
𝑚𝑚

𝑙𝑙
(𝑡𝑡 − 𝑇𝑇 ) − 𝜖𝜖

𝑚𝑚

𝑙𝑙
(𝑡𝑡)

𝑇𝑇

𝑇𝑇∫
0

𝜏𝜏𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠, 𝜏𝜏; 𝜎𝜎) 𝑑𝑑𝑑𝑑𝑑

� (A4)

Recall that T should be taken large enough to make approximation (A1) valid; particularly, this means that

𝑇𝑇

∫
0

𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠, 𝜏𝜏; 𝜎𝜎) 𝑑𝑑𝑑𝑑 ≈

∞

∫
0

𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠, 𝜏𝜏; 𝜎𝜎) 𝑑𝑑𝑑𝑑𝑑� (A5)

Following Appendix A of Kruglyakov et al. (2022) the integral in the RHS of the latter equation can be expressed as

∞

∫
0
��

� (��, �; �) �� = lim
�→∞

2
�

�

∫
0

[∞

∫
0
Re��

� (��, �; �) cos(��)��
]

�� =

lim
�→∞

2
�

∞

∫
0
Re��

� (��, �; �)
sin(�� )

�
�� = Re��

� (��, �; �)||�=0.
� (A6)

Then, Equation A4 can be approximated as

�

∫
0
��� (� − �)��

� (��, �; �) �� ≈ ��� (�) Re�
�
� (��, �; �)||�=0

+
�

∫
0
��
� (�, �; � )�

�
� (��, �; �) ��

+
[

��� (� − � ) − ��� (�)
]

�
� (��, � ; �) ,

� (A7)

where


𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠, 𝑇𝑇 ; 𝜎𝜎) =

1

𝑇𝑇

𝑇𝑇

∫
0

𝜏𝜏𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠, 𝜏𝜏; 𝜎𝜎) 𝑑𝑑𝑑𝑑𝑑� (A8)

The integrals 𝐴𝐴 
𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠, 𝑇𝑇 ; 𝜎𝜎) can be computed using the digital filter technique (see Appendix B), whereas second 

term in the RHS of Equation A7 is estimated as follows.

Taking into account that we have 𝐴𝐴 𝐴𝐴
𝑚𝑚

𝑙𝑙
(𝑡𝑡) at discrete time instants, t = nΔt, n = 0, 1, … , we approximate 𝐴𝐴 𝐴𝐴

𝑚𝑚

𝑙𝑙
(𝑡𝑡𝑡 𝑡𝑡; 𝑇𝑇 ) 

using the Whittaker-Shannon (sinc) interpolation formula

𝑑𝑑
𝑚𝑚

𝑙𝑙
(𝑡𝑡𝑡 𝑡𝑡; 𝑇𝑇 ) ≈

𝑛𝑛Δ𝑡𝑡≤𝑇𝑇
∑

𝑛𝑛=0

𝑑𝑑
𝑚𝑚

𝑙𝑙
(𝑡𝑡𝑡 𝑡𝑡Δ𝑡𝑡; 𝑇𝑇 ) sinc

𝜏𝜏 − 𝑛𝑛Δ𝑡𝑡

Δ𝑡𝑡
,� (A9)

where
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sinc(𝑥𝑥) =
sin𝜋𝜋𝜋𝜋

𝜋𝜋𝜋𝜋
.� (A10)

Recall that sinc interpolation is a method to construct a continuous band-limited function from a sequence of 
real numbers, in our case time series 𝐴𝐴 𝐴𝐴

𝑚𝑚

𝑙𝑙
 at time instants t = nΔt, n = 0, 1, …. Note that in our context, the term 

“band-limited function” means that non-zero values of a Fourier transform of this function are confined to the 
frequencies

|𝜔𝜔| ≤ 𝜋𝜋

Δ𝑡𝑡
.� (A11)

Using the approximation (A9) and taking into account that 𝐴𝐴 𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠, 𝜏𝜏; 𝜎𝜎) = 0, 𝜏𝜏 𝜏 0 (see Appendix A of Kruglyakov 

et al. (2022), one obtains

𝑇𝑇

∫
0

𝑑𝑑
𝑚𝑚

𝑙𝑙
(𝑡𝑡𝑡 𝑡𝑡; 𝑇𝑇 )𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠,𝜏𝜏 ; 𝜎𝜎) 𝑑𝑑𝑑𝑑 ≈

∞

∫
0

𝑑𝑑
𝑚𝑚

𝑙𝑙
(𝑡𝑡𝑡 𝑡𝑡; 𝑇𝑇 )𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠,𝜏𝜏 ; 𝜎𝜎) 𝑑𝑑𝑑𝑑 =� (A12)

∞

∫
−∞

𝑑𝑑
𝑚𝑚

𝑙𝑙
(𝑡𝑡𝑡 𝑡𝑡; 𝑇𝑇 )𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠,𝜏𝜏 ; 𝜎𝜎) 𝑑𝑑𝑑𝑑 =

𝑛𝑛Δ𝑡𝑡≤𝑇𝑇
∑

𝑛𝑛=0

𝑑𝑑
𝑚𝑚

𝑙𝑙
(𝑡𝑡𝑡 𝑡𝑡Δ𝑡𝑡; 𝑇𝑇 )

∞

∫
−∞

𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠,𝜏𝜏 ; 𝜎𝜎) sinc

𝜏𝜏 − 𝑛𝑛Δ𝑡𝑡

Δ𝑡𝑡
𝑑𝑑𝑑𝑑𝑑�

Thus, we can write

�

∫
0

��
� (�, �; � )�

�
� (��, �; �)�� =

�Δ�≤�
∑

�=0

��
� (�, �Δ�; � )̃

�
��
�
(��; �) ,� (A13)

where

̃
�
��
�
(��; �) =

∞

∫
−∞

��
� (��, �; �) sinc

� − �Δ�
Δ�

��.� (A14)

Further, following the properties of the Fourier transform as applied to sinc function, we obtain that

̃
�
��
�
(��; �) =

Δ�
2�

�
Δ�

∫
− �

Δ�

��
� (��, �; �) �

−���Δ��� = Re

⎧

⎪

⎨

⎪

⎩

Δ�
�

�
Δ�

∫
0

��
� (��, �; �) �

−���Δ���

⎫

⎪

⎬

⎪

⎭

.� (A15)

Finally, substituting Equation A13 in Equation A7, and Equation A7 in the RHS of Equation A1 we obtain

� (��, ��; �) ≈
∑

�,�

{

��� (�) Re�
�
� (��, �; �)||�=0 +

��
∑

�=0
��
� (��, �Δ�; � )̃

�
��
�
(��; �)

+
[

��� (�� − � ) − ��� (��)
]

�
� (��, � ; �)

}

.
�

The latter equation can be written in the form of Equation A2 where

�
��
�
(��, � ; �) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

Re��
� (��, �; �)||�=0 − �

� (��, � ; �) −
��−1
∑

�=1
̃

�
��
�
(��; �)

(

1 − �
��

)

, � = 0

̃
�
��
�
(��; �) , � = 1, 2,… , �� − 1

�
� (��, � ; �) −

��−1
∑

�=1
̃

�
��
�
(��; �)

�
��

, � = ��

,�
(A16)

and where 𝐴𝐴 
𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠, 𝑇𝑇 ; 𝜎𝜎) , and ̃

�
��
�
(��; �) are defined in Equations A8 and A15, respectively.
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Computation of the integrals in the RHS of Equation  A15 is performed as follows. First, 𝐴𝐴 𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠, 𝜔𝜔; 𝜎𝜎) are 

computed at zero frequency and at 43 logarithmically spaced frequencies between 1/Δt and 1/(10 7Δt), where Δt 
is one hour for our problem setup. Further, using cubic spline interpolation as applied to calculated 𝐴𝐴 𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠, 𝜔𝜔; 𝜎𝜎) , 

one can analytically compute integrals in the RHS of Equation A15.

An important note here is that, according to Equation  A15, one does not need to compute 𝐴𝐴 𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠, 𝜔𝜔; 𝜎𝜎) for 

𝐴𝐴 𝐴𝐴 𝐴
𝜋𝜋

Δ𝑡𝑡
 (corresponding to the period P = 2Δt). This may be obvious, however, this is not the case if one uses 

piece-wise constant (PWC) approximation of 𝐴𝐴 𝐴𝐴
𝑚𝑚

𝑙𝑙
(𝑡𝑡) as it is done, for example, in Grayver et al. (2021). With PWC 

approximation, one is forced to compute the fields at very high frequencies irrespective of Δt value; this can pose 
a problem from the numerical point of view.

Appendix B:  Computation of 
Since 𝐴𝐴 𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠, 𝜏𝜏; 𝜎𝜎) is real-valued and causal, it can be written as (cf. Appendix A of Kruglyakov et al. (2022))

𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠, 𝜏𝜏; 𝜎𝜎) =

2

𝜋𝜋

∞

∫
0

Im𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠, 𝜔𝜔; 𝜎𝜎) sin(𝜔𝜔𝜔𝜔) 𝑑𝑑𝑑𝑑𝑑� (B1)

Substituting the latter equation into Equation A8 and rearranging the order of integration, we write 𝐴𝐴 
𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠, 𝑇𝑇 ; 𝜎𝜎) 

in the following form


𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠, 𝑇𝑇 ; 𝜎𝜎) = 𝑇𝑇

∞

∫
0

Φ(𝜔𝜔𝜔𝜔 )Im𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫𝑠𝑠, 𝜔𝜔; 𝜎𝜎) 𝑑𝑑𝑑𝑑𝑑� (B2)

where Φ(ωT) reads

Φ(𝜔𝜔𝜔𝜔 ) =
2

𝜋𝜋

1

𝑇𝑇 2

𝑇𝑇

∫
0

𝜏𝜏sin(𝜔𝜔𝜔𝜔)𝑑𝑑𝑑𝑑 =
2

𝜋𝜋

[

sin(𝜔𝜔𝜔𝜔 )

(𝜔𝜔𝜔𝜔 )
2

−
cos (𝜔𝜔𝜔𝜔 )

𝜔𝜔𝜔𝜔

]

.� (B3)

Integrals in Equation B2 can be efficiently estimated using the digital filter technique. Specifically, one needs to 
construct a digital filter for the following integral transform

𝐹𝐹 (𝑇𝑇 ) = 𝑇𝑇

∞

∫
0

Φ(𝜔𝜔𝜔𝜔 )𝑓𝑓 (𝜔𝜔)𝑑𝑑𝑑𝑑𝑑� (B4)

To obtain filter's coefficients for this transform, we exploit the same procedure as in Werthmüller et al. (2019) 
using the following pair of output and input functions

𝐹𝐹 (𝑇𝑇 ) =
(𝑇𝑇 + 1)𝑒𝑒−𝑇𝑇 − 1

𝑇𝑇
,

𝑓𝑓 (𝜔𝜔) =
𝜔𝜔

1 + 𝜔𝜔2
.

� (B5)

Appendix C:  Obtaining B (i), i = 1, 2, 3
Here we present a scheme to obtain B (i), i = 1, 2, 3 thus allowing us to calculate the desired inter-site transfer 
function (cf. Equation 14). Specifically, the scheme includes the following steps:

1.	 �We estimate Nc = 24 times series 𝐴𝐴 𝐴𝐴
𝑚𝑚

𝑙𝑙
(𝑡𝑡) as in Section 3.2

2.	 �We perform principal component analysis of these time series to obtain three “major modes” with time series 
νi(t), i = 1, 2, 3 and 3 × 24 (time independent) matrix 𝐴𝐴  to express new series in terms of the old ones

𝜈𝜈𝑖𝑖(𝑡𝑡) =
∑

𝑙𝑙𝑙𝑙𝑙

𝑙𝑙𝑙𝑙𝑙

𝑖𝑖
𝜖𝜖
𝑚𝑚

𝑙𝑙
(𝑡𝑡), 𝑖𝑖 = 1, 2, 3.� (C1)
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�3.	� We apply matrix 𝐴𝐴  to 𝐴𝐴 𝐁𝐁𝑚𝑚

𝑙𝑙
 (both in time and frequency domain) to obtain fields B (i) corresponding to νi(t), i = 1, 

2, 3 as

𝐁𝐁(𝑖𝑖)(𝐫𝐫, 𝑡𝑡; 𝜎𝜎) =
∑

𝑙𝑙𝑙𝑙𝑙

𝑙𝑙𝑙𝑙𝑙

𝑖𝑖
𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫, 𝑡𝑡; 𝜎𝜎),

𝐁𝐁(𝑖𝑖)(𝐫𝐫, 𝜔𝜔; 𝜎𝜎) =
∑

𝑙𝑙𝑙𝑙𝑙

𝑙𝑙𝑙𝑙𝑙

𝑖𝑖
𝐁𝐁𝑚𝑚

𝑙𝑙
(𝐫𝐫, 𝜔𝜔; 𝜎𝜎).

� (C2)

Data Availability Statement
•	 �The global map of ocean and sediments conductance by Grayver (2021) is available at https://doi.org/10.5281/

zenodo.7224268 (The mirror of the original map from https://github.com/agrayver/seasigma at Zenodo).
•	 �The global conductivity model by Alekseev et al. (2015) is available at https://globalconductivity.ocean.ru/

downloads.html.
•	 �The conductivity model for North America by Kelbert et  al.  (2019) is available at http://ds.iris.edu/ds/

products/emc-conus-mt-2021/.
•	 �1-D global conductivity model is published in a form of Table 1 in Kuvshinov et al. (2021).
•	 �Solver GEMMIE (Kruglyakov & Kuvshinov, 2022) is available at https://gitlab.com/m.kruglyakov/gemmie 

under GPL v2 license.
•	 �The data of the ocean bottom survey is available at http://ohpdmc.eri.u-tokyo.ac.jp/dataset/campaign/obem/

phs99-00/data/index.html.
•	 �The cleaned magnetic field data based on measurements from the global (INTERMAGNET) network 

of observatories are available by following the instructions at https://notebooks.vires.services/
notebooks/04c2_geomag-ground-data-vires.
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